*100_006_Schnorr-1d-Sig

Mid Term Exam (MTE) will be held on 28-th of October, at 17:30 by Zoom.

Please participate with your own computers with installed Octave and my .m files.

During the MTE you must solve 2 problems:

1. Diffie-Hellman Key Agreement Protocol - DH KAP.

2. Man-in-the-Middle Attack (MiMA) for Diffie-Hellman Key Agreement Protocol - DH KAP.
The problems are presented in the site:

imimsociety.net

In section 'Cryptography":

Cryptography (imimsociety.net)

Please register to the site and after that you receive 10 Eur virtual money to purchase the problems.
For registration you should input the first 2 letters of your Surname and full Name, e.g. John Smith
Should register as Sm John.

Please purchase the only one problem at a time.

If the solution is successful then you are invited to press the green button [Get reward].
No any other declaration about the solution results is required.
If the solution failed, then you must press the button [Return] in the top on the left side.

Then 'Knowledge bank' will pay you the sum twice you have paid.
So, if the initial capital was 10 Eur of virtual money and you buy the problem of 2 Eur, then if the solution is
correct your budget will increase up to 12 Eur.

You can solve the problems in imimsociety as many times as you wish to better prepare for MTE.
| advise you to try at first to solve the problem in 'Intellect’ section to exercise the brains.

It is named as '"WOLF, GOAT AND CABBAGE TRANSFER ACROSS THE RIVER ALGORITHM'".
< https://imimsociety.net/en/home/15-wolf-goat-and-cabbage-transfer-across-the-river-algorithm.html|>

The questions concerning the MTE you can ask at the end of the lectures.

Diffie Hellman Key Agreement
Protocol - DH KAP

iL--o

Alice ement Protocsl g Man-in-the Midle (MIM) attack for
»

... Diffie-Hellman Key Agreement Protocol (KAP)

o o ¥ o

o fL-<-¥-<ro
Alice

Loe ot

Diffie & Hellman Recetve the 2018
Turing Award

€2.00

€2.00 €4.00
< PP = (p, 9).
Alice Strong prime number p in real cryptography is of order : p ~ 22048
1 Rﬁ:m Strong prime num_ber p in our examples is of order: p ~ 228
Number >> p=genstrongprime(28)
Key Key generation

Generation
Program e Randomlv choonse a nrivate kev X with1 < X < n — 1.

*100_006_Schnorr-1d-Sig++++ Page 1

https://imimsociety.net/en/
https://imimsociety.net/en/14-cryptography
https://imimsociety.net/en/home/15-wolf-goat-and-cabbage-transfer-across-the-river-algorithm.html

o I Oerrme — g e ——

Key Key generation
Generation
Program « Randomly choose a private key X with 1 < X < p — 1.
@R wubic S @ p Private « The private key is PrK = x = randi(p-1)
PuKa=a PrKa = x Compute d = g" mod p.

e The publickeyis PUK = a = g* mod P.

1. Identification.

If person can prove that he/she knows PrK corresponding to his/her PuK without revealing any
information about PrK then everybody can trust that he is communicating with person posessing
(PrK, Puk) key pair. This kind of proof is named as Zero Knowledge Proof (ZKP) and plays a
very important role in cryptography. It is very useful to realize Identification, Digital Signatures
and many other cryptographically secure protocols in internet. In many cryptographic protocols,
especially in identification protocols PrK is named as witness and PuK as a statement for PrK.
Every actor is having the corresponding key pair (PrKa, PuK) and all PuK are exchanged
between the users using open communication channel as indicated in figure below.

Let Bob is sure that PuK 4 is indeed of Alice and wants to tell Alice that he intends to send her
his photo with chamomile flowers dedicated for Alice. But he wants to be sure that he is
communicating only with Alice itself and with nobody else. He hopes that at first Alice will
prove him that she knows her secret PrKa using ZKP protocol. In general, this protocol is
named as ldentification protocol, it is interactive and has 3 communications to exchange the
following data named as commitment, challenge and response.

& = %@F\ {i

Registration phase: Bank generates PrKa = x and PuK, = a to Alice and hands over this data
in smart card, or in other crypto chip in Alice's smart phone, or in software for Smart ID.

Schnorr Id Scenario: Alice wants to prove Bank that she knows her Private Key - PrKa = x which
corresponds to her Public Key - Puk,= a not revealing PrKa: Zero Knowledge Proof - ZKP
Protocol execution between Alice and Bank has time limit.

Alice's computation resources has a limit --> protocol must be computationally effective.
PrKa=x is called a witness and corresponding PuK a=a=g*mod p is called a statement.

This protocol is initiated by Alice and has the following three communications.

P(x, a) - Prover - Alice V(a) - Verifier - Bank

C:\Users\Eligijus\Documents\REKLAMA 6] ZKP_Pasaka

Schnorr Identification: Zero Knowledge Proof - ZKP PP = (p, 0).

*100_006_Schnorr-1d-Sig++++ Page 2

Schnorr Id is interactive protocol, but not recurent as it is realized to prove the knowledge of mirackle words.
Schnorr Id Scenario: Alice wants to prove Bank that she knows her Private Key - PrK, = x which corresponds

to her - - PuKa= a = g* mod p not revealing PrKa= x.

. Prover P(x, a)
ZKP of knowledge PrK=x:

1.Computes commitment

t for random number 7:)
B: Verifier V(a)

i=randi(p-1) t,a Vam t,a ¢l
t=g'mod p "
/_/ 2.Generates challenge h:
h h h=randi(p-1) i B
\
B
3.Computes response res:
res=i+xh mod (p-1) bl e . res—+—
Verifies:
P gotmeds
: Time
Correctness:

gesmod p = ghmod®-Dmod p = g'g* mod p = t(g¥)" mod p = ta" mod p.

Al Bob
'€ PrKa = x Hello .,o—-PUKA =’ e
Hello ‘,h Alice! ™ Encrypt
Bob [~ 59" i J o Alces
All.ce s m public key 6
m private key m<p 6EB69570 € }C
m<p r } = 08E03CE4 5
8503 O] s €
Ali ’
ice
Bob # PrKa = x
Alice's ivate ke
public key priva v

Schnorr Signature Scheme (S-Sig).

In general, to create a signature on the message of any finite length M parties are using cryptographic

secure H-function (message digest).

In Octave we use H-function

>>hd28("...") % the input '..." of this function represents a string of symbols between the commas.
% the output of this function is decimal number having at most 28 bits.

Let M be a message in string format to be signed by Alice and sent to Bob: >> M="Hello Bob'
For signature creation Alice uses public parameters PP=(p, g) and

*100_006_Schnorr-1d-Sig++++ Page 3

Alice’s key pair is PrKa=x, PuK = a = g*mod p.

Alice chooses at random u, 1<u<p-1 and computes first component r of his signature:

r=g“ mod p. (2.19)
Alice computes H-function value h and second component s of her signature:
h=H(M||r), (2.20)

s=u+xh mod (p-1). (2.21)
Alice’s signature on h is 6=(r, s). Then Alice sends M and o to Bob.

After receiving M' and o, Bob according to (2.20) computes h'

h*=H(M'[[r),
and verifies if
gsmod p = ra"" mod p. (2.22)
V1 V2

Symbolically this verification function we denote by
Ver(a,o,h")=Ve{True, False}={1, 0}. (2.23)
This function yields True if (2.22) is valid if: h=h"and PuKx= a =F(PrKa)= g* mod p.

and: M=M"

Alice: 'Hello Bob' ¥ A
>> M='Hello Bob' ﬁ// _\ M': 6=(rs): a Bank: let M'=M.
M, 6=(r.s); a : ’ ’ 1.Computes A=H(M)||r).

>> h=concat(M.,r)

= 2.Verifies signature on A.
g*mod p = ra" mod p.

Correctness:

g*mod p = guh mod(e-1) mod p = gg*" mod p = r(g*)" mod p = rah mod p.

Non— Fotbadive zke — wrzipP
7 U = randi (Qop,i) 2 Puk,= Q
r :gumw/ P Voridios Cf

s
= al\lv) /) Etheraty 2 =prq" wmodp
h=H(alv) Keccoli-258 o) &

5 =uU+yph mod(p-i)

NYzgP = (7 2)
(miectnets i G* miod P = guwxh Wp/cz%)m[) _

1 | R

*100_006_Schnorr-1d-Sig++++ Page 4

(orre fnebs :

g§/wpﬂ/[)::

U+ Xh wrod Lp—1)

= 4" 8" s p = e () = 0P o £

>> p= genstrongprime(28)
268435019

>> p=int64(268435019); % p is strong prime

>>g=2;

>> x=int64(randi(p-1))
x = 89089011
>>a=mod_exp(g,x,p)
a=221828624

>> m="'Hello Bob'

m = Hello Bob

>> u=int64(randi(p-1))
u=228451192

>> r=mod_exp(g,u,p)

r=33418907

>> cc=concat(m,r)

cc = Hello Bob33418907

% type variable

>> cc=concat(m,'33418907")
cc = Hello Bob33418907

>> ccc=concat(m,'r')

ccc = Hello Bobr

% cc is a string

f=19)

>>h=hd28(cc)

h =104824510 104824510
>> s=mod((u+x*h),p-1) M
s =147250342

*100_006_Schnorr-1d-Sig++++ Page 5

>>g s=mod_exp(g,s,p)
g_s = 185672370
Vi=g_s;
>>a_h=mod_exp(a,h,p)
a_h=263774143

>> V2=mod(r*a_h,p)
V2 =185672370

Example of signature realization with Octave

>> p= int64(268435019)
p = 268435019

>> isprime(p)

ans=1

>> qg=(p-1)/2
q=134217509

>> isprime(q)

ans=1

>>

>> pb=dec2bin(p)

pb =
1111112111211112111111001001011

>> xh=mod(x*h,p-1)

>> s=mod((u+xh),p-1)

